
Problem Set 4 due October 7, at 10 AM, on Gradescope (via Stellar)

Please list all of your sources: collaborators, written materials (other than our textbook and
lecture notes) and online materials (other than Gilbert Strang’s videos on OCW).

Give complete solutions, providing justifications for every step of the argument. Points will
be deducted for insufficient explanation or answers that come out of the blue

Problem 1: We will to reconstruct a matrix A such that the general solution to the equation:

A

[
a
b

]
=

 2
−1
3

 is

[
a
b

]
=

[
0
1

]
+ λ

[
1
2

]

(1) How many rows and columns does A have? (5 points)

(2) Based on the information in the equation above, what is the second column of A? (5 points)

(3) Find the entire matrix A. (10 points)

Solution:
(1) Say A is an m × n matrix. We know that n = 2, else it would not make sense to multiply by

the 2× 1 matrix

[
a
b

]
. Then, by the rules of matrix multiplication (see eq. 15, Lecture 3),

(
m× n matrix

)(
n× p matrix

)
=
(
m× p matrix

)
we have (

m× 2 matrix
)(

2× 1 matrix
)

=
(

3× 1 matrix
)

so m = 3, i.e. A is a 3× 2 matrix.

Grading Rubric: 2.5 points each for the correct number of rows and columns.

(2) The solution is written in the form

vgen = vparticular + wgeneral

(as in Fact 6, Lecture 8). Since the component of the solution in N(A) is able to be scaled, but the
particular solution is not, we conclude

vparticular =

[
0
1

]
wgeneral = λ

[
1
2

]
.
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Therefore, we must have  2
−1
3

 = A

[
0
1

]
=

A11 A12

A21 A22

A31 A32

[0
1

]
=

A12

A22

A32

 .

That is, the second column of A is

 2
−1
3

.

Grading Rubric: 3 points for identify the particular solution, 2 points for the correct computation.

(3) By the decomposition above, we know λ

[
1
2

]
is in N(A). Therefore (for any λ 6= 0),

0 = A

[
1
2

]
=

A11 2
A21 −1
A31 3

[1
2

]
= λ

A11 + 2 · 2
A21 − 1 · 2
A31 + 3 · 2

 .

From which we see the first column of A must be

−4
−2
6

 and

A =

−4 2
2 −1
−6 3

 .
Grading Rubric: 5 points for the correct answer, 5 for the correct justification.

Problem 2: An m × n rank 1 matrix has the property that all its columns are multiples of each
other, so they are of the form:

A =
[
a1b a2b ... anb

]
for some non-zero vector b =

 b1...
bm

 and some scalars a1, ..., an, not all 0.

(1) Write A as the product of a m× 1 matrix with an 1× n matrix. (5 points)

(2) Use part 1 to obtain a simple formula for the symmetric matrix ATA in terms of the ai’s and
bj ’s? Hint: if you’re stuck, try the 3× 2 case for some intuition. (10 points)

(3) What is the rank of ATA from part (2)? (5 points)

Solution:
(1) Written out fully, we have
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A =


a1b1 a2b1 . . . anb1
a1b2 a2b2 . . . anb2

...
...

. . .
...

a1bm a2bm . . . anbm

 .

Then, by the rules of matrix multiplication, we see that for a m × 1 matrix

 b′1...
b′m

 and a 1 × n

matrix
[
a′1 ... a′n

]
, their product is

 b′1...
b′m

 [a′1 ... a′n
]

=


a′1b
′
1 a′2b

′
1 . . . a′nb

′
1

a′1b
′
2 a′2b

′
2 . . . a′nb

′
2

...
...

. . .
...

a′1b
′
m a′2b

′
m . . . a′nb

′
m

 .
We then see that we can simply write

A =

 b1...
bm

 [a1 ... an
]

Grading Rubric: 2.5 points each for the correct row and column matrices.

(2) By the above we have A = baT where a and b are the column vectors given above. We can
then simplify (using the rule that (AB)T = BTAT ))

ATA = (baT )T (baT )

= abTbaT

= ||b||2aaT

where in passing from the second to third lines we have used the formulation of the dot product in
terms of matrix multiplication (u · v = uT v). In the last line, ‖b‖2 denotes the length of b squared,
i.e. ‖b‖2 = b21 + . . .+ b2m. Explicitly, the second term is

aaT =


a21 a2a1 . . . ana1
a1a2 a22 . . . ana2

...
...

. . .
...

a1an a2an . . . a2n

 .
Grading Rubric: 2 points for correctly taking the transpose, 3 points for identifying the dot
product, 5 points for correct answer.

(3) From either the explicit form of aaT or the fact that it is expressed as a product of an n × 1
matrix with a 1×n matrix, we see all the columns are scalar multiples of a. We therefore conclude
the rank is 1.
Grading Rubric: 3 points for the correct answer, 2 for the justification.
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Problem 3: Find a basis for the vector space spanned by the vectors:
1
0
−1
2

 and


0
2
−3
0

 and


2
−2
1
4

 and


3
−4
3
6

 and


−1
2
−2
1

 and


0
4
−6
3


Explain your method. (20 points)

Solution:
We may treat the vector space spanned by the set of vectors as the column space of the matrix

A =


1 0 2 3 −1 0
0 2 −2 −4 2 4
−1 −3 1 3 −2 −6
2 0 4 6 1 3

 .
We can find the reduced row echelon form of the matrix via row operations. Notice that

although row operations do not preserve the column space, they do preserve linear dependences
between the columns. That is to say, if a column does not have a pivot after row reduction (so is
linearly dependent on the ones to its left) then this must also have been the case before the row
reduction. Row reduction gives


1 0 2 3 −1 0
0 2 −2 4 2 4
−1 −3 1 3 −2 −6
2 0 4 6 1 3

 r3+r1,r4−2r1−−−−−−−−→


1 0 2 3 −1 0
0 2 −2 −4 2 4
0 −3 3 6 −3 −6
0 0 0 0 3 3


r3+

3
2
r2−−−−−→


1 0 2 3 −1 0
0 2 −2 −4 2 4
0 0 0 0 0 0
0 0 0 0 3 3


1
2
r2,

1
3
r4,r3↔r4,−−−−−−−−−−→


1 0 2 3 −1 0
0 1 −1 −2 1 2
0 0 0 0 1 1
0 0 0 0 0 0


Thus we see that after the row reduction columns 3 and 4 are in the span of columns 1 and 2,
and column 6 is in the span of columns 1,2, and 5. This must therefore have been the case for the
original matrix as well. That is, we find that columns 1,2, and 5 are a basis for the column space:

1
0
−1
2

 ,


0
2
−3
0

 ,

−1
2
−2
1

 .
An alternative method is to use column operations. In this case, column reduction (without

any column exchanges) results in 
1 0 0 0 0 0
0 1 0 0 0 0
−1 −3

2 0 0 0 0
2 0 0 0 1 0
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from which we obtain a basis 
1
0
−1
2

 ,


0
2
−3
0

 ,


0
0
0
1

 .
which is the above but with the second colum, c2, divided by 2, and the fifth, c5, replaced with
c5 − c2 + c1.
Grading Rubric: 10 points for identifying a correct method. 10 points for correct computation.

Problem 4: For any two subspaces V,W ⊂ Rm, we will write V +W for the subspace consisting
of all vectors of the form v + w, for arbitrary v ∈ V and w ∈W .

(1) If v1, ...,vk is a basis of V and w1, ...,wl is a basis of W , explain why the set v1, ...,vk,w1, ...,wl

spans the subspace V +W . (5 points)

(2) Show that the dimension of V +W is ≤ the sum of dimensions of V and W . Give an example
of when the inequality is strict (i.e. dimV +W < dimV + dimW ). (5 points)

(3) Given two matrices A and B of the same shape, what is the relation between C(A + B) and
the subspaces C(A) and C(B)? (5 points)

(4) Use the previous parts to show that rank (A+B) ≤ rank (A) + rank B. (5 points)

Solution:
(1) The set v1, . . .vk,w1,wl spans if any vector in V +W can be written as a linear combination
of it. By definition, any vector a in V +W can be written

a = va + wa

for some v ∈ V , w ∈ W . Then, since v1, . . . ,vk are a basis (so in particular they span) we can
write

va = a1v1 + . . . akvk

and
wa = b1w1 + . . . blwl

for the same reason. Therefore we have written

a = va + wa = a1v1 + . . . akvk + b1w1 + . . . blwl

as a linear combination of v1, . . .vk,w1,wl.
Grading Rubric: 3 points for writing va,wa in the given bases, 2 points for correct explanation.

(2) Since v1, . . .vk and w1, . . .wl are bases of V and W , we see (from the definition of dimension,
Lecture 9 Definition 10) that dimV = k and dimW = l. By part (1) we have shown a set of k + l
spans V +W , and so we must have

dim(V +W ) ≤ k + l = dimV + dimW.
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This is because a basis can always be obtained from a spanning set by removing vectors until linear
independence is achieved. The inequality above may be strict: consider the case of V being the
x− y plane and W being the y − z plane in R3. That is, the span of (1, 0, 0), (0, 1, 0) and the span
of (0, 1, 0), (0, 0, 1). In this case we have dimV = dimW = 2, but

dim(V +W ) = dimR3 = 3 < 2 + 2 = 4.

Grading Rubric: 2.5 points each for the explanation and the example.

(3) The columns of A+B are the sum of the columns of A and the columns of B respectively. In
particular, they are linear combinations of the columns of A and B. From Problem Set 3, Problem
4 (3), we know that the span of the columns of A and the columns of B together is the column
space of the matrix [

A B
]
.

We then have
span{columns of (A+B)} ⊆ span{columns of

[
A B

]
}

which is to say
C(A+B) is contained in C(

[
A B

]
) = C(A) + C(B).

(for the last equality, we have used the result of Problem Set 3 Problem 4(3)).

Grading Rubric: 3 points for a relation to C(A)+C(B), 2 points for the correct relation (subspace
of).

(4) By definition rank(A+B) = dimC(A+B). By part 3, C(A+B) is a subspace of C(A)+C(B).
Therefore (since a subspace must have smaller dimension)

rank(A+B) = dimC(A+B) ≤ dim(C(A) + C(B))
by(2)

≤ dimC(A) + dimC(B) = rankA+ rankB.

Grading Rubric: 2.5 points each for the inequality of dimensions from being a subspace, and for
correctly applying (2).

Problem 5: do problem 31 in Section 3.5 of the textbook. Make sure you explicitly describe the
four subspaces for the matrix A therein. (20 points)

Solution:
Suppose, as stated in the problem that two (block) matrices of size m× n

A =

[
I F
0 0

]
B =

[
I G
0 0

]
have the same four fundamental subspaces, and both are in reduced row echelon form.

First we describe the four fundamental subspaces explicitly:

1. (The Column Space) Since the matrices are in reduced row echelon form, we can read off the
column spaces

C(A) = span {e1, . . . , ek}
C(B) = span {e1, . . . , el}

where ei = (0, . . . , 1, . . . 0) where the 1 appears in the ith spot. Here, k and l are the size of
the identity matrices in A,B respectively (so in A the I is the k × k identity matrix).
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2. (The Nullspace) Label the columns of F (of which there are n− k) by f1, . . . , fn−k. Likewise
label the columns of G (of which there are n − l) by g1, . . . ,gn−l. Since the matrices are in
reduced row echelon form, we can immediate read off the nullspaces as

N(A) = span




−f1
1
0
...
0

 ,

−f2
0
1
...
0

 , . . .

−fn−k

0
0
...
1




where (fi) is shorthand for the ith column vector of F (which has k entries). Likewise

N(B) = span




−g1

1
0
...
0

 ,

−g2

0
1
...
0

 , . . .

−gn−l

0
0
...
1




3. (The Row Space) Since the matrices are in reduced row echelon form we can immediately see

R(A) = C(AT ) = span





1
0
...
0
f11
...

f1,n−k


,



0
1
...
0
f21
...

f2,n−k


, . . .



0
0
...
1
fk1
...

fk,n−k




and similarly for R(B) = C(AT ) with k replaced by l and fij replaced by gij .

4. (The Nullspace of AT ) We have

AT =

[
I 0
F T 0

]
from which we see the Nullspace contains vectors ek+1, ek+2, . . . , em. Since there are exactly
m− k of these, and we know the Nullspace of AT has dimension m− rank = m− k (see top
of page 181 in the textbook), these must be all of them. Therefore

N(AT ) = span{ek+1, . . . , em}

and likewise
N(BT ) = span{el+1, . . . , em}.

Now we conclude that if the above four subspaces are equal, then F = G. From 1. we see that
k = l, ie the identity matrices, and hence F,G are the same size. Next, consider the row spaces. If
the row spaces are equal, the first row of A must be a linear combination of the rows of B. But
since the first row of A has an entry in the first column and zeros in the next k − 1 columns, we
see only the first row of B can contribute to this linear combination. Since the top left entry is 1
for both, we conclude the first rows of A and B are equal. Likewise, the second row of A must be
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a linear combination of the rows of B, but since the first and the third through kth entries are 0 of
the second row are 0, we see only the second row of B can contribute to the linear combination,
and the scalar must again be 1. Therefore the second rows are equal as well. Proceeding in this
fashion shows F = G.

Grading Rubric: 3 points for correct description of each subspace, 8 points for correct explanation
of why F = G.
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